A empresa Meta✴, segundo o The Register, realizou um estudo cujos resultados indicam que podem surgir erros no funcionamento dos sistemas de IA devido a falhas de hardware, e não apenas devido a algoritmos imperfeitos. Isso pode levar a respostas de IA imprecisas, estranhas ou simplesmente ruins.
Diz-se que falhas de hardware podem causar corrupção de dados. Estamos falando, em particular, do chamado “bit flip”, quando o valor de uma célula de memória pode mudar arbitrariamente de “0” lógico para “1” lógico ou vice-versa. Isto leva ao aparecimento de valores falsos, o que pode resultar no funcionamento incorreto das aplicações de IA. Uma das causas dos erros é a radiação cósmica e, com o aumento da densidade dos recursos, sua influência aumenta. No entanto, em sistemas complexos modernos, tais erros, por vários motivos, podem ocorrer em qualquer fase do armazenamento, transmissão e processamento de informações.
Um erro em um bit de um parâmetro altera significativamente a resposta da IA (Fonte: Meta✴)
Essas falhas de hardware não detectadas, que não podem ser detectadas e corrigidas imediatamente, resultam em corrupção silenciosa de dados (SDC). Tais erros podem provocar alterações nos parâmetros da IA, o que acaba levando a inferências incorretas. Alega-se que, em média, 4 em cada 1.000 resultados de inferência são imprecisos devido a problemas de hardware. “A crescente complexidade e heterogeneidade das plataformas de IA torna-as cada vez mais suscetíveis a falhas de hardware”, afirma o estudo Meta✴. Nesse caso, alterar um bit pode fazer com que os erros cresçam como uma bola de neve.
Para avaliar possíveis avarias, propõe-se a introdução de um novo valor – “Parâmetro Fator de Vulnerabilidade” (PVF). O PVF mostra a probabilidade de que a corrupção de um parâmetro específico acabe levando a uma resposta incorreta do modelo de IA. Espera-se que esta métrica padronize a avaliação quantitativa da vulnerabilidade de um modelo de IA a possíveis falhas de hardware. O indicador PVF pode ser otimizado para vários modelos e tarefas. A métrica também é proposta para ser utilizada na fase de treinamento de IA e para identificar parâmetros cuja integridade precisa ser monitorada.
Os fabricantes de hardware também estão a tomar medidas para melhorar a fiabilidade e estabilidade das suas soluções. Assim, a NVIDIA enfatizou especificamente a importância do RAS nos aceleradores Blackwell. É verdade que isso é feito principalmente para aumentar a estabilidade de clusters ultragrandes, cujo tempo de inatividade devido a erros será muito caro.
O CEO da Tesla, Elon Musk, publicou um pequeno vídeo com a legenda "Tesla Optimus…
Imagens de um processador Intel do final da era Pentium 4 surgiram nas redes sociais.…
O Tribunal Distrital Leste do Departamento de Justiça dos EUA, na Virgínia, está realizando uma…
Quando os celulares não podiam se gabar de processadores potentes ou telas de alta resolução,…
Esta semana, as ações de várias das empresas mais populares no setor de computação quântica…
O Discord anunciou uma violação de dados envolvendo alguns de seus usuários. O incidente ocorreu…