Os pesquisadores criaram um análogo do modelo de IA OpenAI em 26 minutos usando o método de destilação

Pesquisadores da Stanford e da Universidade de Washington criaram um modelo de IA que supera o Openai na solução de problemas matemáticos. O modelo, chamado S1, foi treinado em um conjunto limitado de dados de 1000 perguntas por destilação. Isso tornou possível obter alta eficiência com recursos mínimos e provar que grandes empresas como OpenAI, Microsoft, Meta✴ e Google podem não precisar criar grandes centers, preenchendo -os com milhares de processadores gráficos da NVIDIA.

Fonte da imagem: Growtika/Unsplash

O método de destilação que os cientistas aplicou foi uma solução essencial no experimento. Essa abordagem permite que pequenos modelos estudem sobre as respostas fornecidas por modelos maiores de IA. Nesse caso, como escreve a Verge, a S1 melhorou rapidamente suas habilidades usando as respostas do modelo de inteligência artificial Gemini 2.0 Flash Thinking Experimental, desenvolvido pelo Google.

O modelo S1 foi criado com base no projeto QWEN2.5 do Alibaba (Cloud) Open Source. Inicialmente, os pesquisadores usaram um conjunto de dados de 59.000 perguntas, mas durante os experimentos chegaram à conclusão de que um aumento na quantidade de dados não fornece melhorias significativas e, para o treinamento final, eles usaram apenas um pequeno conjunto de 1000 questões. Ao mesmo tempo, foi utilizado apenas 16 GPU NVIDIA H100.

No S1, também foi utilizada uma técnica chamada “Escala de tempo de teste”, que permite que o modelo “reflita” antes de gerar uma resposta. Os pesquisadores também estimularam o modelo a dobrar suas conclusões adicionando um comando na forma da palavra “espera” (“espera”), que forçou a IA a continuar raciocinando e corrigindo erros em suas respostas.

Alega-se que o modelo S1 mostrou resultados impressionantes e foi capaz de superar a previsão OpenAI O1 em 27 % ao resolver problemas matemáticos. O modelo R1 recentemente sensacional da DeepSeek também usou uma abordagem semelhante para relativamente pouco dinheiro. É verdade que agora o OpenAI acusa o Deepseek de extrair informações de seus modelos, violando as condições de serviço. Vale a pena dizer que, nas condições de usar o Google Gemini, é indicado que sua API é proibida de usar para criar bots de bate -papo concorrentes.

Um aumento no número de modelos menores e mais baratos pode, de acordo com especialistas, entregar todo o setor e provar que não há necessidade de investir bilhões de dólares em treinamento de IA, criar grandes centers e comprar uma grande quantidade de GPU.

avalanche

Postagens recentes

O Substack sofreu um vazamento de dados de usuários no outono, que só foi descoberto em fevereiro.

O Substack, um serviço popular que permite a blogueiros e jornalistas criar conteúdo e enviá-lo…

57 minutos atrás

Rumores: Versão de Starfield para PS5 em breve, lançamento para Switch 2 em risco.

A desenvolvedora Bethesda Game Studios tem demorado a confirmar o lançamento de seu RPG espacial…

1 hora atrás

O mercado de veículos elétricos da China estagnou, com as vendas da BYD despencando para o menor nível em dois anos em janeiro.

Os números de vendas de veículos elétricos da marca chinesa BYD em janeiro foram os…

1 hora atrás

Contrariando a tradição, a SpaceX pretende ser listada nos índices de ações imediatamente após seu IPO.

Assessores da SpaceX, empresa de Elon Musk que recentemente se fundiu com sua startup xAI,…

1 hora atrás

Alphacool apresenta Apex Thermal Putty X1 Liquid Thermal Pads

A Alphacool, especialista em refrigeração líquida, lançou o Apex Thermal Putty X1, uma alternativa altamente…

2 horas atrás

“Robôs precisam do seu corpo”: RentAHuman.ai permitirá que agentes de IA contratem pessoas para trabalhos no mundo real.

O engenheiro de software Alexander Liteplo anunciou o lançamento do RentAHuman.ai, uma plataforma para agentes…

2 horas atrás