Google está tornando os robôs mais inteligentes dizendo a eles o que podem e o que não podem fazer

Quem usa assistentes de voz inteligentes, como Alice, Siri, etc., provavelmente já percebeu que a tecnologia está ficando mais inteligente a cada dia. No entanto, a lacuna entre as tecnologias de controle de voz e sua implementação na robótica autônoma ainda é enorme, e há várias razões para isso.

Fonte da imagem: Haje Kamps/ TechCrunch

Ensinar um robô a realizar tarefas repetitivas em espaços controlados sem a presença de pessoas, embora não seja a tarefa mais fácil, mas bastante solucionável. É muito mais difícil ensinar um robô a resolver várias tarefas com base em comandos de voz em espaços onde as pessoas também estão presentes. Não estamos falando de modelos como aspiradores de pó robóticos, que são simplesmente programados para não tocar em nada no chão.

O Google fez algum progresso no nível de compreensão da linguagem natural por robôs que os humanos podem usar. Com a ajuda de seu sistema de processamento de linguagem natural Pathways Language Model (PaLM), a empresa conseguiu obter o processamento preciso de frases e a compreensão pelo robô do que uma pessoa realmente deseja, em vez de literalmente fazer o que foi dito.

A próxima tarefa é entender do que o robô é realmente capaz. O robô pode entender a solicitação para retirar um item da prateleira, mas o problema é que ele não conseguirá alcançá-lo porque a prateleira é muito alta. O Google chama de “capacidades” o que um robô pode fazer com mais ou menos sucesso. Essas podem ser tarefas simples (“vá em frente um metro”), tarefas mais complexas (“encontre uma lata de refrigerante na cozinha”), bem como ações complexas de várias etapas que exigem que o robô entenda suas próprias habilidades e o mundo ao seu redor. Por exemplo, “Ugh, eu derramei minha Coca no chão. Você poderia limpar a poça e me dar uma nova bebida?” Neste último caso, o robô precisará dividir a tarefa em várias etapas – determinar o local onde o líquido foi derramado, ir à cozinha, encontrar uma esponja, voltar, coletar água, voltar à cozinha para esprema a esponja, etc. Embora,

Outro problema que a robótica enfrenta é que os modelos de linguagem não estão vinculados ao mundo físico. Por exemplo, para o pedido “Eu derramei minha bebida, você pode ajudar?” o modelo de linguagem GPT-3 responde: “Você pode tentar usar um aspirador de pó.” E isso faz sentido para ela, pois o modelo de linguagem associa o aspirador de pó ao processo de limpeza. Embora o aspirador de pó não seja projetado para remover poças, tentar fazê-lo pode quebrar.

Segundo o Google, é importante ensinar os robôs a determinar o que eles podem e o que não podem fazer, e o que faz sentido fazer primeiro em várias situações.

avalanche

Postagens recentes

A Seagate lança discos rígidos de 32 TB com 10 pratos, gravação HAMR e CMR, a partir de US$ 700.

A Seagate anunciou a disponibilidade global de seus discos rígidos de alta capacidade de 32…

41 minutos atrás

O WhatsApp copiou mais uma funcionalidade do Telegram: sugestões de figurinhas ao digitar emojis.

A versão mais recente do aplicativo beta do WhatsApp TestFlight para iOS da Apple agora…

1 hora atrás

A escassez de memória este ano limitará os volumes de produção de PCs e aumentará os preços.

O impacto do boom da IA ​​no mercado de PCs não se limitará ao aumento…

3 horas atrás

A Alphabet tornou-se a quarta empresa com uma capitalização de mercado superior a 4 biliões de dólares.

Na semana passada, a capitalização de mercado da Alphabet, que inclui o Google, ultrapassou a…

4 horas atrás

A TSMC está disposta a aumentar o investimento nos EUA em troca de tarifas de importação mais baixas para produtos taiwaneses.

Enquanto o governo anterior dos EUA tentou atrair fabricantes estrangeiros com subsídios para a localização…

5 horas atrás