Uma falha acidental abriu a porta para processadores quânticos acessíveis

Cientistas da Universidade de Nagoya descobriram a possibilidade de observar fenômenos quânticos à temperatura ambiente em condições normais, o que pode levar a um avanço na computação quântica. A descoberta foi motivada pela imperfeição da produção de materiais para experimentos, quando os defeitos eram mais importantes do que as matérias-primas de alta qualidade.

Fonte da imagem: Nagoya University Takenobu Lab

Na verdade, não há contradição nisso. Defeitos nas estruturas atômicas e cristalinas há muito tempo são o foco da pesquisa no estudo dos fenômenos quânticos. A descoberta dos cientistas japoneses cai completamente nessa estratégia, embora, neste caso, o elemento do acaso tenha levado a muitas observações interessantes.

Os pesquisadores estudaram o fenômeno da transferência de estado dos elétrons para fótons em uma camada de dissulfeto de tungstênio em um substrato de plástico. Para observar os processos, o material foi resfriado a uma temperatura de -193 ° C. Enquanto o resfriamento acontecia, descobriu-se que em algumas áreas do substrato, o fluxo de elétrons (corrente elétrica) poderia formar a chamada radiação de fótons circularmente polarizada em vale em temperaturas mais altas.

Esclareçamos que a direção do movimento dos elétrons, que é controlada pelo campo eletromagnético aplicado, é capaz de gerar polarização circular da luz em uma ou outra direção. Esta é na verdade a codificação da informação no estado dos fótons usando uma corrente para maior participação na computação quântica. Em defeitos de substrato, essa codificação tornou-se possível em temperaturas normais e sem o uso de campos magnéticos fortes.

Depois de descobrir o efeito, os cientistas estudaram propositalmente o fenômeno à temperatura ambiente em defeitos induzidos artificialmente. Eles curvaram especialmente os substratos e estudaram os processos nesses locais. Nessas áreas, as correntes elétricas sempre ocorreram na direção da deformação. Essas correntes, por sua vez, geravam luz polarizada em vale, e tudo isso acontecia à temperatura ambiente, e a direção da polarização era alterada com a simples aplicação de um campo elétrico.

Os materiais de pesquisa foram publicados na revista Advanced Materials. O trabalho futuro se concentrará na otimização da estrutura e do sistema para avançar ainda mais no caminho para a computação quântica.

avalanche

Postagens recentes

Automontagem Direcionada (DSA): Não é um substituto para EUV, mas sim uma ferramenta muito útil / Offsyanka

Quando, há mais de uma década, no final de 2014, especialistas líderes da indústria de…

36 minutos atrás

Meta visa centenas de gigawatts para IA: Zuckerberg lança o projeto de ponta Meta Compute

O CEO da Meta✴, Mark Zuckerberg, anunciou o lançamento de uma nova iniciativa de ponta…

60 minutos atrás

O Windows 11 oculta quais drivers instala — a Microsoft promete corrigir o problema.

Usuários do Windows 11 notaram que as atualizações de drivers recebidas pelo Windows Update são…

1 hora atrás

Disco Elysium, Blue Prince, Return of the Obra Dinn e muito mais: o Festival de Detetives do Steam convida você a caçar descontos.

Conforme o cronograma apresentado no verão passado, o primeiro festival temático do modelo de 2026,…

3 horas atrás

A Apple escolheu o Gemini do Google para criar uma Siri nova e mais inteligente.

A Apple anunciou uma parceria plurianual com o Google, na qual seu modelo de IA…

4 horas atrás

“Um parque de diversões colorido, mas vazio”: Designer de Fallout 2 e roteirista de New Vegas explicam o que há de errado com o Fallout da Bethesda.

Chris Avellone, cofundador da Obsidian Entertainment, designer de Fallout 2 e roteirista de Fallout: New…

4 horas atrás