Cientistas americanos expandiram os limites da operação livre de erros de computadores quânticos

Um desafio central para a criação de computação quântica praticamente valiosa é a supressão de erros. Hoje, o custo desta supressão parece proibitivo. Para cada qubit lógico incluído no algoritmo, devem ser usados ​​até 1.000 qubits físicos. Recentemente, um grupo de cientistas dos Estados Unidos mostrou que os custos indiretos podem ser reduzidos significativamente, o que promete amplas perspectivas para a computação quântica.

Fonte da imagem: geração AI Kandinsky 3.0/avalanche noticias

Uma equipe de Harvard liderada pelo ex-professor graduado do MIPT Mikhail Lukin, um dos principais cientistas do mundo em sistemas quânticos, demonstrou a operação de algoritmos quânticos livres de erros em 48 qubits lógicos em uma matriz de 280 qubits físicos. Usando controle de nível lógico e arquitetura zoneada em matrizes reconfiguráveis ​​de átomos neutros, o sistema combina portas de dois qubit de alta confiabilidade, conectividade arbitrária e rotações de um qubit totalmente programáveis.

O computador quântico criado pelo grupo de Lukin no laboratório de Harvard explora defeitos em estruturas cristalinas. Podem ser diamantes artificiais, onde são colocados átomos de rubídio super-resfriados. A programação de tais sistemas é realizada com pinças laser. Primeiro, os átomos são preenchidos aleatoriamente em defeitos e, em seguida, a matriz é “programada” movendo os átomos para os defeitos incluídos no circuito para executar o algoritmo (simulação).

Esquema para obtenção de matrizes bidimensionais a partir de átomos neutros e formação de estruturas com diferentes arranjos de átomos excitados. Fonte da imagem: Natureza

Usando uma série de algoritmos de complexidade variada, o grupo de Lukin mostrou que o uso superredundante de qubits físicos para cada qubit lógico é, em geral, desnecessário. Para que os cálculos ocorram com precisão satisfatória, até 7 qubits físicos por lógico podem ser suficientes, conforme descrito em trabalho publicado em 6 de dezembro na revista Nature.

Esses resultados sugerem a chegada da computação quântica com correção de erros, mais cedo ou mais tarde. Isto abrirá aplicações e impulsionará uma mudança na abordagem dos desafios e oportunidades na computação quântica.

avalanche

Postagens recentes

A Apple se recusou a implementar Claude na Siri devido à insaciabilidade da Anthropic.

A Apple abandonou o modelo de IA Claude da Anthropic para aprimorar a Siri e,…

3 horas atrás

A Intel apresentou um protótipo de um enorme chip de IA com quatro unidades lógicas e 12 módulos HBM4.

A Intel Foundry divulgou um relatório técnico detalhando as soluções avançadas de design e implementação…

11 horas atrás

A Samsung, a SK Hynix e a Micron estão reavaliando todos os pedidos de memória para evitar compras em grande quantidade.

Segundo o Nikkei Asia, três grandes fabricantes de chips de memória — Micron, SK Hynix…

11 horas atrás

O console portátil MSI Claw A8 com Ryzen Z2 Extreme chegou aos EUA e à Europa, com preço de US$ 1.149 para a versão com 24 GB de RAM.

O MSI Claw A8 é o primeiro console portátil da empresa baseado na plataforma AMD.…

14 horas atrás

A SK Hynix supera a Samsung em lucro anual pela primeira vez em meio ao boom da IA.

Historicamente, a Samsung Electronics tem sido consistentemente a maior fornecedora mundial de componentes semicondutores em…

15 horas atrás