O CEO da Nvidia, Jensen Huang, explicou por que a SRAM não substituirá a memória de alta largura de banda (HBM) em sistemas de IA. Em uma sessão de perguntas e respostas na CES 2026 em Las Vegas, ele respondeu às especulações de que a empresa poderia abandonar a cara HBM em favor de componentes mais baratos.
Fonte da imagem: Tom’s Hardware
De acordo com o Tom’s Hardware, Huang delineou uma visão de que o requisito fundamental para hardware de IA não é a especialização restrita, mas sim a flexibilidade, que é precisamente o que a memória HBM proporciona. Seu principal argumento centra-se na natureza instável e em constante mudança das cargas de trabalho de IA. Os modelos evoluem rapidamente e novas arquiteturas e modalidades são introduzidas, tornando a otimização de hardware para uma única tarefa ineficaz a longo prazo. Embora Huang tenha reconhecido que as soluções centradas em SRAM podem oferecer velocidade incrível em certos cenários e evitar a latência inerente à memória externa, elas enfrentam severas limitações de capacidade ao serem escaladas. Embora tais aceleradores pareçam atraentes em testes controlados, em aplicações do mundo real eles não conseguem oferecer o equilíbrio entre largura de banda e densidade que a HBM proporciona.
O CEO da Nvidia também abordou o tema dos modelos de IA abertos, cuja proliferação deverá reduzir a dependência de GPUs caras. Ele reconheceu o valor desses modelos, mas enfatizou que a abertura da arquitetura não elimina as limitações de infraestrutura. O treinamento e a disponibilização de modelos modernos, independentemente da licença, ainda exigem enormes recursos computacionais e grandes quantidades de memória. Além disso, o desenvolvimento de modelos abertos com janelas de contexto maiores e a adição de multimodalidade apenas aumentam a necessidade de memória flexível e de alto desempenho, como a HBM.
Assim, a posição da Nvidia é que a diversidade e a variabilidade constante das cargas de trabalho de IA tornamVersatilidade e adaptabilidade são fatores econômicos essenciais. Aceleradores especializados, focados em tarefas específicas, podem apresentar resultados impressionantes em benchmarks, mas, no cenário de IA em rápida transformação, correm o risco de se tornarem obsoletos. A empresa está disposta a tolerar o alto custo do HBM e a complexidade de seus sistemas, pois isso lhe permite manter a capacidade de se adaptar a novas arquiteturas de modelos e cenários de implantação. Segundo Jensen Huang, o ponto em que os modelos se estabilizam a ponto de soluções especializadas serem mais econômicas do que plataformas flexíveis ainda não foi alcançado.
Os asteroides são essencialmente uma massa de detritos, aglomerados de rocha, unidos pela gravidade. Isso…
Pesquisadores da Universidade de Wisconsin, em Plattville (EUA), desenvolveram um método para converter leite estragado…
A Meta✴ anunciou acordos com três empresas de energia nuclear — Vistra, TerraPower e Oklo…
A lista de jogos anunciada ontem para a próxima apresentação Developer_Direct 2026 inclui apenas três…
A TSMC de Taiwan, maior fabricante de semicondutores sob contrato do mundo, registrou um aumento…
A Amazfit, fabricante de produtos de saúde e fitness, apresentou dois dispositivos conceituais na CES…