Evite NVIDIA: MosaicML traz aprendizado de IA para aceleradores AMD Instinct MI250 sem modificação de código

O desenvolvedor de soluções de IA generativa, MosaicML, recentemente adquirido pela Databricks, relatou bons resultados no treinamento de modelos de linguagem grande (LLMs) usando os aceleradores AMD Instinct MI250 e sua própria plataforma.

A empresa disse que está procurando um novo hardware de aprendizado de máquina em nome de seus clientes, já que a NVIDIA atualmente não pode fornecer seus aceleradores a todos. MosaicML explicou que os requisitos para tais chips são simples:

  • Cargas de trabalho do mundo real: oferece suporte ao treinamento LLM com precisão de 16 bits (FP16 ou BF16) com a mesma convergência de modelo final e qualidade treinada em sistemas NVIDIA.
  • Velocidade e Custo: Desempenho competitivo e relação custo/desempenho.
  • Desenvolvimento: alterações mínimas de código em comparação com sua pilha existente (PyTorch, FSDP, Composer, StreamingDataset, LLM Foundry).

Fonte da imagem: MosaicML

Como a empresa observou, nenhum dos chips até o momento foi capaz de satisfazer totalmente todos os requisitos do MosaicML. No entanto, com o lançamento de versões atualizadas da estrutura PyTorch 2.0 e da plataforma ROCm 5.4+, a situação mudou – o treinamento LLM tornou-se possível nos aceleradores AMD Instinct MI250 sem alterações de código ao usar sua pilha LLM Foundry.

Alguns destaques:

  • O treinamento LLM tem sido estável. Com a pilha de treinamento LLM Foundry altamente determinística, o treinamento do LLM MPT-1B nos aceleradores AMD MI250 e NVIDIA A100 produziu curvas de perda quase idênticas ao iniciar do mesmo ponto de teste. Os pesquisadores conseguiram até alternar entre os aceleradores AMD e NVIDIA durante um treinamento.
  • O desempenho era competitivo com os sistemas A100 existentes. Os pesquisadores traçaram o perfil da taxa de transferência de treinamento de modelos MPT com parâmetros de 1 a 13 Gb e descobriram que a velocidade de processamento do MI250 por acelerador está dentro de 80% de A100-40GB e dentro de 73% de A100-80GB. A empresa espera que essa lacuna diminua à medida que o software da AMD for aprimorado.

No entanto, nenhuma alteração no código foi necessária.

Todos os resultados são de um nó de quatro MI250s, mas a empresa está trabalhando com hiperescaladores para testar os recursos de aprendizado em clusters AMD Instinct maiores. “No geral, nossos testes iniciais mostraram que a AMD criou uma pilha de hardware e software eficiente e fácil de usar que pode competir com a NVIDIA”, disse MosaicML. Este é um passo importante na luta contra o domínio da NVIDIA no mercado de IA.

avalanche

Postagens recentes

Tesla admitiu que seus robôs e táxis autônomos serão controlados remotamente por pessoas

No início desta semana, muitos recursos especializados chamaram a atenção para um anúncio de vaga…

17 minutos atrás

Tesla estabeleceu preços exorbitantes para desenvolvedores de aplicativos terceirizados

Há mais de um ano, a Tesla começou a distribuir documentação para trabalhar com sua…

47 minutos atrás

Em uma semana, a Europa recuperará sua independência em lançamentos espaciais – o novo foguete Vega C está pronto para voar

A Agência Espacial Europeia (ESA) anunciou que lançará um novo foguete leve, Vega C, após…

2 horas atrás